" NASA объявило экипаж первых миссий частных космических кораблей

NASA объявило состав экипажей первых пилотируемых полетов американских частных космических кораблей Crew Dragon и CTS-100 Starliner, которые должны состояться в 2019 году. Кроме того, агентство рассказало о составах первых регулярных миссий к МКС, которые будут выполнены на этих космических кораблях. Трансляция пресс-конференции велась на YouTube-канале NASA.

На пресс-конференции агентство объявило экипажи обоих пилотируемых тестовых миссий. В состав первой пилотируемой миссии Crew Dragon, назначенной на апрель 2019 года, вошли астронавты Роберт Бенкен (Robert Behnken) и Даглас Хёрли (Douglas Hurley). Экипажем первой пилотируемой миссии CTS-100 Starliner стали Эрик Боу (Eric Boe), Крис Фергюсон (Chris Ferguson) и Николь Онапу Манн (Nicole Aunapu Mann).

Кроме того, NASA рассказало об экипажах первых штатных миссий к МКС. В состав первой регулярной миссии Boeing CTS-100 Starliner вошли Джон Кассада (Josh Cassada) и Сунита Уильямс (Sunita Williams). Экипажем первой регулярной миссии Crew Dragon стали Виктор Гловер (Victor Glover) и Майкл Хопкинс (Michael Hopkins).
В 2010 году NASA запустило программу по стимулированию разработки частных пилотируемых космических кораблей, которые могли бы доставлять американских астронавтов на Международную космическую станцию вместо приближавшихся к последним полетам американским Space Shuttle и российских кораблей «Союз». По время финального этапа программы NASA заключило контракты на перевозку астронавтов со SpaceX, разрабатывающей корабль Crew Dragon, и Boeing, разрабатывающей CTS-100 Starliner.

В начале августа NASA стало известно, что первые беспилотные и пилотируемые полеты пройдут позже, чем планировалось ранее. Беспилотный полет Crew Dragon намечен на ноябрь 2018 года, а в апреле 2019 года за ним последует полет с астронавтами на борту. CTS-100 Starliner отправится в первый беспилотный полет в конце 2018 года или начале 2019, а первый пилотируемый полет корабля состоится летом 2019 года.

Главная проблема, вызывающая опасения NASA и властей США, заключается в том, что теперь первые пилотируемые полеты и последующая сертификация кораблей стали еще ближе к окончанию контракта на перевозку американских астронавтах на российских «Союзах», который рассчитан до конца 2019 года. Таким образом, в случае новых переносов сроков или проблемах при сертификации кораблей SpaceX и Boeing NASA может на некоторое время лишиться доступа к МКС.

Помимо двух космических кораблей от SpaceX и Boeing, в США также создается пилотируемый корабль Orion компании Lockheed Martin. В отличие от них, Orion предназначен для полетов за пределы низкой околоземной орбиты. К примеру, именно с его помощью планируется строить и развивать перспективную лунную орбитальную станцию. Подробнее о планах по созданию станции можно почитать в нашем материале «Промежуточная станция».

Григорий Копиев"

https://nplus1.ru/news/2018/08/03/crew





" Инженеры холдинга «Российские космические системы» (РКС, входит в Госкорпорацию «Роскосмос») приступили к экспериментальной отработке сверхскоростной радиолинии для перспективных российских космических аппаратов. Она позволит передавать с орбиты большие объемы данных со скоростью до 10 Гбит/с.

Работы над новой радиолинией начались с инициативных разработок РКС и сейчас ведутся в рамках выполнения Федеральной космической программы России на 2016-2025 годы. Ее внедрение требуется для обеспечения возможности принимать информацию со спутников дистанционного зондирования Земли (ДЗЗ) нового поколения.

В ходе работы над системой специалисты РКС планируют реализовать техническую возможность передачи данных по спутниковым радиоканалам в Х-диапазоне частот со скоростью до 3 Гбит/с за счет применения поляризационной развязки и до 10 Гбит/с в Ка- диапазоне за счет дальнейшего частотного уплотнения.

Инженер-исследователь Центра перспективных технологий конструирования бортовой аппаратуры РКС Алексей Петров: «Мы уже завершили стендовую отработку экспериментальной системы, которая позволит передавать данные с орбиты со скоростью до 1,5 Гбит/с. Характеристики этой радиолинии позволят российским спутниковым системам ДЗЗ конкурировать с лучшими зарубежными аналогами. Одновременно мы прорабатываем возможность практического применения нескольких таких радиоканалов для получения общей скорости передачи данных до 10 Гбит/с. Такая скорость позволит передавать снимки высокого разрешения с низкоорбитальных спутниковых систем».

Необходимость в высокоскоростных радиолиниях возникла по мере роста требований к разрешению снимков современных спутниковых систем ДЗЗ. Они собирают большие объемы данных, которые необходимо передавать на наземные пункты приема за ограниченное время сеанса связи. Особенно эта проблема актуальна для малых космических аппаратов. В этом случае от скорости передачи данных зависит возможность установки на такие аппараты камер высокого разрешения.

Создаваемая в РКС система позволит с высокой оперативностью передавать на Землю снимки, получаемые спутниками ДЗЗ с разрешающей способностью менее одного метра и большой полосой обзора, включая многоспектральные изображения высокого разрешения.

Кроме аппаратов ДЗЗ разработка РКС будет использоваться и на других космических аппаратах с высокоскоростными каналами связи."

https://www.roscosmos.ru/25381/



Познавательно о технических неполадках :

" Новые спутники — новые баги: Инфракрасный сенсор спутника GOES-17 плохо охлаждается

У запущенного в марте метеорологического спутника GOES-17 проблема - инфракрасная камера нового поколения работает только частично из-за того, что плохо охлаждается. И сейчас одна команда инженеров пытается сократить периоды неполной работоспособности, а вторая - установить причину проблемы. Обе задачи важны, потому что анализ телеметрии предшественника, GOES-16, показал, что там тоже есть признаки ненормальной работы системы охлаждения, и, похоже, четвертое поколение метеорологических спутников GOES столкнулось с системной проблемой.

Хронология событий



Трансляция пуска

GOES-17 был запущен 1 марта. 12 марта аппарат добрался до геостационарной орбиты и приступил к тестированию бортовых систем. И здесь обнаружился неприятный сюрприз. Для нормальной работы основного оптического прибора спутника, Advanced Baseline Imager (ABI), требовалась низкая температура. Инфракрасные датчики нужно охлаждать, некоторые аж до 60° Кельвина (-213° С), чтобы они могли нормально функционировать. И выяснилось, что система охлаждения не справляется со своими обязанностями. К счастью, температурная нагрузка спутника зависела от времени суток и дня года, поэтому прибор оказался частично работоспособным, но, тем не менее, 13 из 16 частотных полос ежедневно были недоступны несколько часов.

Матчасть

Спутник GOES-17 является вторым в четвертом поколении метеорологических геостационарных спутников GOES. Первым в 2016 году на орбиту отправился GOES-16. По замыслу программы GOES два спутника занимают точки стояния восточнее и западнее обеих Америк, чтобы иметь качественное покрытие территории США. Еще две точки используются для проверки и хранения запасных спутников.

Нажмите на изображение для увеличения. 

Название:	1093589_original.jpg 
Просмотров:	412 
Размер:	115.7 Кб 
ID:	87223
Карта расположения спутников GOES, заливка - область видимости. Иллюстрация NASA

GOES-16 занял восточную точку, а для 17 спутника предназначалась западная. До запуска спутники носят алфавитные имена, поэтому шестнадцатый имел обозначение GOES-R, а семнадцатый -S. Конструктивно аппараты построены на платформе Lockheed Martin A2100, которая разрабатывалась для телекоммуникационных спутников и GPS, и несут приборы различного назначения.

Geostationary Lightning Mapper (GLM) работает в ближнем инфракрасном диапазоне и используется для обнаружения молний.
Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) направлен на Солнце, измеряет инсоляцию (облучение солнечными лучами) и может фиксировать потенциально опасные солнечные вспышки.
Solar Ultraviolet Imager (SUVI) тоже направлен на Солнце и представляет из себя телескоп, работающий в ультрафиолетовом диапазоне и предназначенный для наблюдения за коронарными дырами, выбросами массы и прочими явлениями солнечной погоды.
Magnetometer (MAG) и Space Environment In-Situ Suite (SEISS) наблюдают за магнитными полями и потоками высокоэнергетических частиц соответственно.

Но самым главным инструментом является Advanced Baseline Imager (ABI), который в 16 частотных диапазонах от видимого до инфракрасного фиксирует атмосферные явления, происходящие на земном шаре. Много диапазонов нужно потому, что, например, снег и лед лучше видны в диапазоне длин волн 1.58–1.64 микрометра, а туман, пожары и вулканизм - в 3.80–4.00 микрометра.


Оптическое разрешение зависит от диапазона и в лучшем случае составляет 0,5 км на пиксель, что в два раза больше разрешения сенсора спутников GOES предыдущего третьего поколения. Также, для сравнения, стоит отметить, что сенсоры GOES третьего поколения имели всего 5 диапазонов.

После введения в строй GOES-16 NOAA и NASA с полным правом похвастались полученными изображениями.

Проблема

Но увы, перечисленные в предыдущей главе красоты подпорчены технической проблемой - тепловые трубки, предназначенные для охлаждения сенсоров, не справляются со своей задачей. Теплоноситель, пропилен, недостаточно хорошо циркулирует в них. Причина этого пока не установлена, в качестве версий рассматриваются: излишний неконденсирующийся газ (в тепловых трубках теплоноситель газифицируется и конденсируется, пузырьки газа в жидкости будут мешать циркуляции), загрязнение трубок посторонними частицами или механическое повреждение трубок. На исследование причины и воспроизведение проблемы на земле уйдет еще 1-2 месяца.

Сенсоров, аналогичных ABI GOES-17, в космосе сейчас работает четыре. Один установлен на GOES-16, и еще два однотипных AHI стоят на японских геостационарных метеоспутниках "Химавари-8" и -9. Японские приборы работают нормально, но вот детальный анализ телеметрии GOES-16 показал, что считающаяся штатно функционирующей система охлаждения столкнулась с такими же проблемами, только в меньшей степени. Температура ABI GOES-16 оставалась в допустимых рамках, поэтому на признаки недостаточной циркуляции теплоносителя не обратили внимания. Повторение ситуации говорит о системности проблемы - либо при конструировании, либо на производстве допустили ошибку, и новые спутники GOES до исправления дефекта запускать нельзя.

Параллельно другая группа инженеров боролась с проблемой на спутнике. После принятых мер (жаль, не уточнили, каких), доступность диапазонов повысилась. Сейчас 13 из 16 диапазонов функционируют 24 часа в сутки, а оставшиеся 3 - 20 часов. Но расслабляться рано - приближается сентябрь, когда Солнце будет светить почти прямо в сенсор, серьезно повышая тепловую нагрузку. Точные числа пока неизвестны, но ожидается, что круглые сутки будут доступны 10 из 16 диапазонов, а оставшиеся - большую часть времени.

Заключение

Как и любая сложная техника, новые приборы на спутниках всегда могут принести сюрпризы. И история с GOES-17 показывает обычно малозаметную, но от этого не менее интересную работу по поддержанию спутников в рабочем состоянии, обновлению их программного обеспечения и настройки параметров работы "железа"."

Полностью :

https://lozga.livejournal.com/177360.html