По РЛС бортовой Ф-22... Тут на темке была версия на 300 км мощи...
Вот инфа:
РЛС URR предназначена для установки на самолете ATF и обеспечивает работу в следующих режимах.



1. При действиях по воздушным целям

Режимы поиска;

- поиск по скорости;

- поиск с измерением дальности: на встречных курсах, все ракурсный в верхней полусфере, в полном секторе обзора;

- режим воздушного боя;

- пассивный прием.

Режимы сопровождения:

- сопровождение на проходе;

- сопровождение одиночной цели;

- предупреждение о приближении ракет и сопровождение ракет;

- сопровождение заданной цели.

Режимы опознавания цели:

— определение госпринадлежности цели по ее радиолокационным приз*накам;

- распознавание целей в групповом строю;

- опознавание на большой дальности.



2. При действиях по наземным целям

Режимы получения изображения земной поверхности :

- получение изображения с помощью обычного луча;

- получение изображения с помощью доплеровского сужения луча;

- обнаружение метеообразований;

- режим маяка.

Режимы когерентного обзора земной поверхности:

- синтезирование апертуры;

- селекция движущихся наземных целей;

- выделение тактических целей.

Навигационные режимы:

- следование рельефу местности;

- облет препятствий;

- измерение скорости;

- определение местоположения самолета.



В состав РЛС входят три основных подсистемы: активная ФАР (АФАР), приемное устройство со стабилизированным гетеродином и про*цессор обработки сигналов.

Выбор (АФАР) для РЛС самолета ATF объясняется тем, что она обладает рядом преимуществ по сравнению с антенными решетками с механическим сканированием. Например, обычная антенна с механическим сканированием не совместима с технологией «Стелс», так как представляет собой плоскую отражающую поверхность, формирующую при сканировании сильный отраженный сигнал в направлении на облучающую РЛС противника. АФАР является неподвижной системой, ее плоскость может быть наклонена на некоторый угол относительно наибо*лее вероятных направлений облучения самолета другими РЛС, что исключает возникновение мощных отражающих сигналов в этих направлениях.

В РЛС с АФАР переключение луча с одного направления на другое в пределах всей зоны обзора осуществляется в течение нескольких секунд. Поэтому в таких РЛС изменение режимов работы происходит почти мгновенно. Например, возможен быстрый переход от сопровождения цели, находящейся на каком-либо угловом направлении, к режиму обнаружения с поиском по скорости на другом угловом направлении. Эти режимы реализуются последовательно, но настолько быстро, что создается эффект одновременной работы РЛС в нескольких режимах. В технических условиях на РЛС самолета ATF было предусмотрено чередование следующих режимов работы:

сопровождение на проходе, поиск с определением дальности, поиск по скорости, следование рельефу местности и облета препятствий, картографирование.

Еще одним преимуществом АФАР является возможность реализации режимов, характеризующихся малой вероятностью перехвата сигнала РЛС средствами разведки и предупреждения, установленными на цели. Существует ряд методов для обеспечения этого. Основной из них предусматривает излучение сигналов ограниченной мощности. После обнаружения цели мощность облучения уменьшается до минимума, необходимого для ее сопровождения, и продолжает снижаться по мере сближения с ней. Возможно также изменение сигналов в пространстве, по времени и частоте, что затрудняет обнаружение противником источника конкретных сигналов на фоне всех других. Необходимо отметить, что исследования в области методологии обеспечения низкой вероятности перехвата сигналов АФАР засекречены.

Другим преимуществом РЛС с АФАР состоит в том, что может работать как две или более антенны и использоваться для противодействия системам радиоэлектронной борьбы (РЭБ) противника. Например, если помехи создаются дистанционными передатчиками, то часть приемопе*редающих модулей антенной решетки может быть выделена для генера*ции сигналов обнуления на той же длине волны, но со сдвигом фазы для исключения помехового строба.

Основными недостатками АФАР является ее высокая стоимость и некоторые другие факторы (разделение на субапертуры, скорость обра*ботки данных при большом количестве модулей АФАР и др.), влияющие на характеристики РЛС с АФАР.

При цене одного модуля 500 долл. стоимость АФАР составит 1 млн. долл. при наличии в составе АФАР 2000 модулей. Для самолета стоимостью 35 млн. долл. такая сумма считается высокой, несмотря на уменьшение расходов на эксплуатацию и техническое обслуживание.

По программе SSPP АФАР для РЛС самолета ATF разрабатывает фирма Texas Instruments (США), которая в апреле 1983 г. получила контракт на создание антенной решетки типа SSPA (Solid State Phased Array - твердотельная ФАР). Изготовление АФАР было завершено в июле 1987 г. а в мае 1988 г. она была поставлена фирме Westinghouse (США) для комплексирования с остальным оборудованием.

Активная ФАР состоит из 198О приемопередающих модулей. В состав каждого модуля входят фазовращатель, усилитель мощности для передачи сигналов и малошумный предусилитель для их приема. Выходная мощность модуля 2 Вт.

Диаметр АФАР 81,3 см, масса 219,1 кг, объем 0,275 куб.м, рассеиваемая мощность 8278 Вт, расход охлаждающей жидкости 11,3 л/мин.

Для управления фазой каждого модуля используется пятиразрядное устройство управления, кроме того, при формировании луча каждый модуль может быть включен или выключен. Для приема и передачи используются отдельные волноводные соединения. Общее управление формиро*ванием луча осуществляется с помощью четырех автономных ЭВМ, основанных на микропроцессорах, каждая из которых управляет одним квадрантом АФАР.

Для питания АФАР используются четыре источника питания напряжением +7В постоянного тока. Каждый из этих источников питает приемопередающие модули одного квадранта апертуры. Кроме того, предус*мотрен комбинированный источник питания ±5 В со схемами переключе*ния приблизительно 50 кГц. Масса источника питания АФАР вместе с блоком сопряжения 140,6 кг, объем 0.565 куб.м, рассеиваемая мощность 3800 Вт, расход охлаждающего воздуха 3800 кг/мин, расход охлаждающей жидкости 14,3 л/мин.

С начала 1989 г. фирмы Texas Instruments и Westinghouse, а так*же Hughes проводят четырехлетнюю работу по программе, направленной на создание промышленной технологии изготовления приемопередающих модулей и на доведение их стоимости до 400 долл. при темпе произ*водства тысяча модулей в день.

Принимаемая энергия поступает через малошумный усилитель в каж*дом модуле антенны в восьмиканальное приемное устройство. Четыре канала непосредственно связаны с АФАР, а оставшиеся четыре исполь*зуются в качестве резервных и выполнения вспомогательных функций.

В состав приемного устройства входят 43 модуля, из которых два модуля - переключатель/малошумный усилитель; 19 модулей - приемники с устройствами дискретизации, преобразующими синфазный и квадра*турный выходные сигналы в цифровую форму; шесть модулей - контроллер; три модуля - устройство синхронизации; шесть модулей - источни*ки питания.

Модули, входящие в состав приемного устройства, размещаются в три ряда на монтажной панели, которая предусматривает их жидкостное охлаждение. Для охлаждения модули крепятся к лепесткам теплообменников, расположенных с каждой стороны панели, с помощью клиновид*ных зажимов. Хладагент поступает в заднюю часть блока и направляется в шесть теплообменников в соответствии с количеством рассеивае*мой модулями энергии.

В РЛС имеется стабилизированный генератор, генерирующий сигналы возбуждения передающих модулей.

Масса приемного устройства/стабилизированного генератора 90,7 кг, объем 0.074 куб.м, рассеиваемая мощность 2300 Вт, расход охлаждающей жидкости 8,3 л/мин.

С выхода приемного устройства данные в цифровой форме поступают в процессор обработки сигналов, где из них выделяются сигналы цели. Процессор построен по технологии VHSIC, которая позволяет повы*сить быстродействие в 50-100 раз по сравнению с процессорами, построенными на основе существующей технологии. Масса процессора 104,3 кг, объем 0,116 куб.м, рассеиваемая мощность 2175 Вт, расход охлаждающего воздуха 3,7 кг/мин.

При разработке РЛС большое внимание уделялось ее надежности и техническому обслуживанию. Средняя наработка на отказ РЛС должна составлять 400-500 ч. Этот уровень надежности будет достигнут без применения резервирования, так как все блоки РЛС обладают повышенной надежностью. Так, СНО для антенны составляет 2500 ч, а СНО для процессора обработки сигналов - приблизительно 1000 ч. Остальные, входящие в состав РЛС блоки, будут иметь СНО около 1250 ч, что позволит получить требуемую надежность со средней наработкой на отказ 400 ч. Интервал между циклами технического обслуживания сос*тавит 100 ч.

При работе РЛС даже выход из строя до 5% модулей АФАР почти не приводит к ухудшению технических характеристик РЛС, что также зна*чительно повышает ее надежность.

Кроме того, антенна, построенная на основе твердотельных передат*чиков способна заменить мощный передатчик на лампе бегущей волны, являющийся одним из основных источников отказов в существующих РЛС.

Дальность действия РЛС 90 - 185 км, масса 553,7 кг, потребляемая мощность 16533 Вт, объем 0,565 куб.м, расход охлаждающего воздуха 4,38 кг/мин. расход охлаждающей жидкости 33,9 л/мин.